Skip to content

Getting Started

This guide will help you get up and running with enrichmcp in minutes.

Installation

Install enrichmcp using pip:

pip install enrichmcp

Or if you're using Poetry:

poetry add enrichmcp

Basic Concepts

enrichmcp is built around three core concepts:

1. Entities

Entities are Pydantic models that represent your domain objects. They're decorated with @app.entity and include rich descriptions for AI agents:

@app.entity
class Product(EnrichModel):
    """Represents a product in the catalog."""

    id: int = Field(description="Unique product identifier")
    name: str = Field(description="Product display name")
    price: float = Field(description="Current price in USD")

2. Relationships

Relationships connect entities together, allowing AI agents to traverse your data graph:

@app.entity
class Order(EnrichModel):
    """Customer order containing products."""

    id: int = Field(description="Order ID")

    # Define relationships
    customer: Customer = Relationship(description="Customer who placed this order")
    products: list[Product] = Relationship(description="Products in this order")

3. Resolvers

Resolvers define how relationships are fetched from your data source:

@Order.customer.resolver
async def get_order_customer(order_id: int) -> Customer:
    """Fetch the customer for an order."""
    # Your database logic here
    return await db.get_customer_by_order(order_id)

Your First API

Let's build a simple book catalog API:

from datetime import date
from enrichmcp import EnrichMCP, EnrichModel, Relationship
from pydantic import Field

# Create the application
app = EnrichMCP(title="Book Catalog API", description="A simple book catalog for AI agents")


# Define entities
@app.entity
class Author(EnrichModel):
    """Represents a book author."""

    id: int = Field(description="Author ID")
    name: str = Field(description="Author's full name")
    bio: str = Field(description="Short biography")

    # Relationship to books
    books: list["Book"] = Relationship(description="Books written by this author")


@app.entity
class Book(EnrichModel):
    """Represents a book in the catalog."""

    id: int = Field(description="Book ID")
    title: str = Field(description="Book title")
    isbn: str = Field(description="ISBN-13")
    published: date = Field(description="Publication date")
    author_id: int = Field(description="Author ID")

    # Relationship to author
    author: Author = Relationship(description="Author of this book")


# Define resolvers
@Author.books.resolver
async def get_author_books(author_id: int) -> list[Book]:
    """Get all books by an author."""
    # In real app, this would query a database
    return [
        Book(
            id=1,
            title="Example Book",
            isbn="978-0-123456-78-9",
            published=date(2023, 1, 1),
            author_id=author_id,
        )
    ]


@Book.author.resolver
async def get_book_author(book_id: int) -> Author:
    """Get the author of a book."""
    # In real app, this would query a database
    return Author(id=1, name="Jane Doe", bio="Bestselling author")


# Define root resources
@app.resource
async def list_books() -> list[Book]:
    """List all books in the catalog."""
    return [
        Book(
            id=1,
            title="Example Book",
            isbn="978-0-123456-78-9",
            published=date(2023, 1, 1),
            author_id=1,
        )
    ]


@app.resource
async def get_author(author_id: int) -> Author:
    """Get a specific author by ID."""
    return Author(id=author_id, name="Jane Doe", bio="Bestselling author")


# Run the server
if __name__ == "__main__":
    app.run()

Using Context

EnrichMCP provides automatic context injection for accessing logging, progress reporting, and lifespan resources:

from contextlib import asynccontextmanager
from enrichmcp import EnrichContext


# Set up lifespan for database connection
@asynccontextmanager
async def lifespan(app: EnrichMCP) -> AsyncIterator[dict[str, Any]]:
    db = await Database.connect()
    try:
        yield {"db": db}  # Available in context
    finally:
        await db.disconnect()


# Create app with lifespan
app = EnrichMCP("My API", "Description", lifespan=lifespan)


# Use context in resources and resolvers
@app.resource
async def get_user(user_id: int, ctx: EnrichContext) -> User:
    # Logging
    await ctx.info(f"Fetching user {user_id}")

    # Access database from lifespan
    db = ctx.request_context.lifespan_context["db"]

    # Report progress
    await ctx.report_progress(50, 100, "Loading user data")

    return await db.get_user(user_id)

Context is automatically injected when you add a parameter typed as EnrichContext.

Using Existing SQLAlchemy Models

Have a project full of SQLAlchemy models already? You can expose them as an MCP API in minutes:

from sqlalchemy import ForeignKey
from sqlalchemy.ext.asyncio import create_async_engine
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column, relationship

from enrichmcp.sqlalchemy import (
    EnrichSQLAlchemyMixin,
    include_sqlalchemy_models,
    sqlalchemy_lifespan,
)

engine = create_async_engine("postgresql+asyncpg://user:pass@localhost/db")


class Base(DeclarativeBase, EnrichSQLAlchemyMixin):
    pass


class User(Base):
    __tablename__ = "users"

    id: Mapped[int] = mapped_column(primary_key=True)
    username: Mapped[str] = mapped_column(unique=True)
    orders: Mapped[list["Order"]] = relationship(back_populates="user")


class Order(Base):
    __tablename__ = "orders"

    id: Mapped[int] = mapped_column(primary_key=True)
    user_id: Mapped[int] = mapped_column(ForeignKey("users.id"))
    total: Mapped[float] = mapped_column()
    user: Mapped[User] = relationship(back_populates="orders")


class Product(Base):
    __tablename__ = "products"

    id: Mapped[int] = mapped_column(primary_key=True)
    name: Mapped[str] = mapped_column()
    price: Mapped[float] = mapped_column()


lifespan = sqlalchemy_lifespan(Base, engine, cleanup_db_file=True)
app = EnrichMCP("My ORM API", lifespan=lifespan)
include_sqlalchemy_models(app, Base)
app.run()

sqlalchemy_lifespan works with any async engine and seeding data is optional.

Next Steps